වාත්ථිතාව සිදුවෙනවේ අවශ්ණය අත්ථිත්ව සිදුව අත්ථිත්ථ වාත්ථ සිදුව සිවෙරෙන් අත්ථිත්ථ අත්ථිත්ථ

S. Ravichandran, Ph.D.
Advanced Biomedical Computing Center (ABCC)
National Cancer InstituteFrederick
Frederick, MD 21702

65/25/2004
Email: sravi@ncifcrf.gov
Tel: 3018461991

http://nciiris.ncifcrf.gov/~ravichas/docking

Goals of Docking

Fitting a small molecular (drug molecule) into a protein

Docking two proteins together

novel inhibitor discovery using molecular databases

Things U need

1) Structures of protein/small molecule

Molecule I	Databases	Method
Protein/DNA	PDB	x-ray,
Small Molecules	CSD	x-ray

2) Software:

Program to do docking: Dock, AutoDock Ludi, FlexX 3D-Dock etc.

3) Powerful Computers: CPU, disk-space etc.

?s to ask before docking:

Critical analysis of the protein structures

What to do with bound ions, water molecules? Remove them? Why?

Crystal structure - Rigid naturebound ions and water are held in the active site. Are they valid configurations?

Resolution of the structure?
High resolution/thermal factors

NMR: Which conformation/model to choose?

The docking activity gives the proteins the ability to promote and inhibit(or accelerate or prevent) certain chemical reactions.

Importance:

Designing bioactive compounds, Computer-Aided Drug design

..... and many more

HIV-Protease complex with tripeptide inhibitor

Things we know:

- a) HIV protease: enzyme in the AIDS virus, important for its replication
- b) Chemical reaction takes place in protease at an active site
- c) Inhibitor drugs bind to the active site and block the functioning

?s we ask:

- a) Binding affinity of the drug
- b) What has to be changed for better binding

Immunophilin FKBP soluble receptor for the natural immunosuppressant drug FK506

Aim: Find strong-binding ligands that can substitute for the natural FK506

Figure 4. Location of 2 and 9 in the docked complex. 9 was docked in the presence of 2.

AMBER was used to perform MD & snap-shot conformations were taken and docked using AutoDock

Problem:

To find molecular binding sites (hot-spots) by computer

Why is it difficult?

- 2 Rigid molecules
- 6 degrees of freedom
 (3-rotational, 3 translational)

In addition if you assume the small drug sized molecules to be flexible (say 14 degrees of free dom)

1028 variations

Even difficult with
a SUPER COMPUTER!!!!

Atombased Essential for structure based drug design

> Prof. A. J. Olson & coworkers Scripps Research Institute

Atom-based tools are usually slower than the matching methods & considered also better becos of the assumed flexibility of the ligands.

```
1990: Drs. David S. Goodsell;
Arthur J. Olson;
Garrett M. Morris;
Ruth Huey; Scott Halliday
RikBelew...

Scripps Research Institute
La Jolla, CA

Orginal Version: f77
Currently: C++
```

AutoDockTools (ADT)

Free for Academics

Michel Sanner & Ruth Huey Scripps Resarch Institute

(ver 3.0.5)

GUI to prepare and submit jobs for AutoDock Code written in Python

Optimization
Global minimum or maximimum
of a function with
following properties:

Continuous function Domain Range

Search techniques:

improves its estimate of minimum by searching for better solutions in a local neighbourhood of current solution

Obal: Will perform a sophisticated search across several multiple local minimum

Energy =
$$V_{vdw} + V_{coul} + V_{hb}$$

$$\mathbf{V}_{\text{vdw}} = \sum_{i,j} 4\epsilon_{ij} [(A_{ij}/\mathbf{r}_{ij})^{12} - (B_{ij}/\mathbf{r}_{ij})^{6}]$$

$$\mathbf{V_{coul}} = \sum_{i,j} (q_i q_j) / [4\pi \epsilon(\mathbf{r}) \epsilon_0 r_{ij})$$

<u>Pairwise</u>

Additive (Const dielectric or distance dependent)

H- bonding 12-10 form is used

Empirical relationship between molecular structure and binding freee energy

$$\Delta G = K_{vdw} * V_{vdw} + K_{hb} * V_{hb} + K_{ele} * V_{coul}$$

$$+ K_{tor} * V_{tor} + K_{sol} * V_{sol}$$

Coefficients are empirically determined using linear regression analysis from a set of Protein-ligand complexes with known binding constants.

Rxn. Coordinates

E

Model Ligand (NL = 4)

Model Receptor
 (NR = 10)

Energy Calculation:

11 12 13 14 15 16 17 18 19 110
21 22 23 24 25 26 27 28 29 210
31 32 33 34 35 36 37 38 39 310
41 42 43 44 45 46 47 48 49 410

Total Terms = NL * NR

To deal at each simulation step

Example: Biotin has 19 atoms

Receptors of the range of

1000 or more atoms

 $(1000 \times 19 = 19000) \text{ terms } !!!!$

AutoDock we will be doing million steps on GA

so, 19000 * Millon Interactions per Simulation

How to avoid this Computational Heaviness without losing information?

AutoDock uses GRID(s) to precalculate the energies due to all the atoms of the ligands and store them.

These grids are like LOOKUP-TABLES and used to lookup the interaction energies later

The Grid Method makes the energy calculations independent of the size (number) of the Receptor!!

That is all OK, What is a GRID?

Imagine the ligand has 4 atoms of 3 atom types • •

X

Conflicting Requirements

- a) desire for a robust and physically relevant procedure
- b) Computation demands at a reasonable level

Static Receptor - Mobile small drug molecule

Methods of docking:

- a) Simulated Annealing:
- b) Genetic Algorithms:

Annealing is a process in which temperature of the substance is reduced (slowly) until the material crystallizes in a single crystal (usually corresponds to global minimum free—energy)

Simulated Annealing: Computational method of mimicking annealing. SA can be used to do both global and local search. Global at high Temperature and local at low temperatures.

Rxn. Coordinates

Simulated Annealing

Cycle Monte Carlo Random changes to ligand position, orientation and/or conformation Compute new E. Is E₁ is lower than E₀? $T_i = (gT_{i-1})$ No Yes Accept the accepted with changes Is the number of acceptances or rejection are within the chosen number? No Receptor Yes End Cycle Does random walk around the receptor

Ligand

Hybrid Genetic Algorithm

How big?

Set of solutions (Populations or Chromosomes)

What are chromosomes?

Generate population of n chromosomes

What is fitness?

Evaluate the fitness f(xi)

Crossover how often? Mutation how often? Elitsm? Selection? Create new population

<u>Elitsm Selection</u>

Crossover Mutation

No

Is Termination Condition (Max # of Energy Eval. or Generations) satisfied?

No Explicit
Termination conditions

S.Ravichandran, ABCC NCI, sravi@ncifcrf.gov

Yes

STOP

and so on

If E1 is lower than E2 probably 1 will eventuvally survive compared to 2

Transl.Gene

Rot. Gene

Torsion Gene

Generation

Mapping translates genotypes-phenotypes & fitness to calculate E

Fitness Which individuals will reproduce based on worst energy individuval

Crossover

2-point crossover

Parent 1

+

Parent 2

Offspring

Mutation

Elitism

S.Ravichandran, ABCC NCI, sravi@ncifcrf.gov

random changes to variables using Cauchy distribution
How many top individuvals
Survive into next generation?

Issues with GA:

- 1) Premature convergence
- 2) Too long for convergence
 How many runs?
 How many energy
 evaluations?
- 3) Choice of parameters

Initialize population

Repeat

Evaluate Solutions in the population Perform Competitive Search Apply Genetic Operators Perform Local Search

Until Convergence Criteria Satisfied

Pseudo Code for GA

Ph.D. Thesis of W.E. Hart (1994)

Freeware

Dr. Micheal Sanner Molecular Graphics Lab Scripps Research Institute La Jolla, CA

ADT provides GUI interface for setting up and using AutoDock

http://www.scripps.edu/pub/olson-web/people/sanner

1) Sybyl

Receptor:

PDB -> Add essential H -> Fix charges Kollman United charges -> save as Mol2 file

Ligand:

PDB -> check for atom types -> add all H -> fix charges -> save as mol2 file

2) type *adt* at the system prompt

AutoTors

- 1) Read the ligand molecule
- 2) Use Autotors to setup the tree and brances
- 3) Toggle torsion activity
- 4) Aromatic Carbons C-> A
- 5) Non-Polar hydrogens (merge or restore)

AutoGpf (grid parameter file)

- 1) Read the macromolecule
- 2) If the solvation parameters are not added ADT queries whether to add them, if you say yes, it converts the mol2 file to pdbqs file
- 3) Set Map types
- 4) Set grid maps
- 5) Write GPF or edit GPF

AutoDpf (docking parameter file)

- 1) Read the macromolecule
- 2) Read the ligand
- 3) Select Docking algorithm
- 4) Set docking run parameters
- 5) write or edit DPF file

Start

- 1) Start AutoGrid
- 2) Start AutoDock
- 3) Options to submit jobs in other SGIs
- 4) Cancel the jobs

Test Case

Streptavidin/Biotin (1stp) (2.6 Ang Resol)

Weber et al 1989

Autogrid:

Number of points:

116, 104, 124 (x,y,z),

117 X 104 X 124 = 1508832

Grid Spacing = 0.375 Ang.

Map types C,H,N,S,O & e

CPU Time: 7.53s AutoGrid

Octane SGI workstation

Docking: LGA-LS, Population Size = 50;

Elitism = 1, Cross-over rate = 0.8

rate of mutation = 0.02, GA_num_evals 250000

Lowest Docked Energy Mean		Number in Clust er		Est Free Ene. of Binding
-10.78	-10.46	6	0.39	9.03

CPU Time: 3m 25.13s

Octane SGI workstation

Streptavidin/Biotin complex (1stp)

P.C. Weber, D.H. Ohlendorf, J.J. Mendolowski, and F.R. Salemme (1992)

Bound Conformation Violet Lowest Energy Conformation Red

Things to know:

Not possible to find whether a ligand will bind with millimolar, micromolar or nano-molar binding constants

Genetic Algorithm methods are nondeterministic (sucessive runs may not produce the same answer). Also there is no guarantee that the solution identified by GA will be the best solution.

Useful Links

http://w3.to/autodock

http://nciiris.ncifcrf.gov/~ravichas/docking

